3 research outputs found

    Recalage/Fusion d'images multimodales à l'aide de graphes d'ordres supérieurs

    Get PDF
    The main objective of this thesis is the exploration of higher order Markov Random Fields for image registration, specifically to encode the knowledge of global transformations, like rigid transformations, into the graph structure. Our main framework applies to 2D-2D or 3D-3D registration and use a hierarchical grid-based Markov Random Field model where the hidden variables are the displacements vectors of the control points of the grid.We first present the construction of a graph that allows to perform linear registration, which means here that we can perform affine registration, rigid registration, or similarity registration with the same graph while changing only one potential. Our framework is thus modular regarding the sought transformation and the metric used. Inference is performed with Dual Decomposition, which allows to handle the higher order hyperedges and which ensures the global optimum of the function is reached if we have an agreement among the slaves. A similar structure is also used to perform 2D-3D registration.Second, we fuse our former graph with another structure able to perform deformable registration. The resulting graph is more complex and another optimisation algorithm, called Alternating Direction Method of Multipliers is needed to obtain a better solution within reasonable time. It is an improvement of Dual Decomposition which speeds up the convergence. This framework is able to solve simultaneously both linear and deformable registration which allows to remove a potential bias created by the standard approach of consecutive registrations.L’objectif principal de cette thĂšse est l’exploration du recalage d’images Ă  l’aide de champs alĂ©atoires de Markov d’ordres supĂ©rieurs, et plus spĂ©cifiquement d’intĂ©grer la connaissance de transformations globales comme une transformation rigide, dans la structure du graphe. Notre cadre principal s’applique au recalage 2D-2D ou 3D-3D et utilise une approche hiĂ©rarchique d’un modĂšle de champ de Markov dont le graphe est une grille rĂ©guliĂšre. Les variables cachĂ©es sont les vecteurs de dĂ©placements des points de contrĂŽle de la grille.Tout d’abord nous expliciterons la construction du graphe qui permet de recaler des images en cherchant entre elles une transformation affine, rigide, ou une similaritĂ©, tout en ne changeant qu’un potentiel sur l’ensemble du graphe, ce qui assure une flexibilitĂ© lors du recalage. Le choix de la mĂ©trique est Ă©galement laissĂ©e Ă  l’utilisateur et ne modifie pas le fonctionnement de notre algorithme. Nous utilisons l’algorithme d’optimisation de dĂ©composition duale qui permet de gĂ©rer les hyper-arĂȘtes du graphe et qui garantit l’obtention du minimum exact de la fonction pourvu que l’on ait un accord entre les esclaves. Un graphe similaire est utilisĂ© pour rĂ©aliser du recalage 2D-3D.Ensuite, nous fusionnons le graphe prĂ©cĂ©dent avec un autre graphe construit pour rĂ©aliser le recalage dĂ©formable. Le graphe rĂ©sultant de cette fusion est plus complexe et, afin d’obtenir un rĂ©sultat en un temps raisonnable, nous utilisons une mĂ©thode d’optimisation appelĂ©e ADMM (Alternating Direction Method of Multipliers) qui a pour but d’accĂ©lĂ©rer la convergence de la dĂ©composition duale. Nous pouvons alors rĂ©soudre simultanĂ©ment recalage affine et dĂ©formable, ce qui nous dĂ©barrasse du biais potentiel issu de l’approche classique qui consiste Ă  recaler affinement puis de maniĂšre dĂ©formable

    Registration/Fusion of multimodal images using higher order graphs

    No full text
    L’objectif principal de cette thĂšse est l’exploration du recalage d’images Ă  l’aide de champs alĂ©atoires de Markov d’ordres supĂ©rieurs, et plus spĂ©cifiquement d’intĂ©grer la connaissance de transformations globales comme une transformation rigide, dans la structure du graphe. Notre cadre principal s’applique au recalage 2D-2D ou 3D-3D et utilise une approche hiĂ©rarchique d’un modĂšle de champ de Markov dont le graphe est une grille rĂ©guliĂšre. Les variables cachĂ©es sont les vecteurs de dĂ©placements des points de contrĂŽle de la grille.Tout d’abord nous expliciterons la construction du graphe qui permet de recaler des images en cherchant entre elles une transformation affine, rigide, ou une similaritĂ©, tout en ne changeant qu’un potentiel sur l’ensemble du graphe, ce qui assure une flexibilitĂ© lors du recalage. Le choix de la mĂ©trique est Ă©galement laissĂ©e Ă  l’utilisateur et ne modifie pas le fonctionnement de notre algorithme. Nous utilisons l’algorithme d’optimisation de dĂ©composition duale qui permet de gĂ©rer les hyper-arĂȘtes du graphe et qui garantit l’obtention du minimum exact de la fonction pourvu que l’on ait un accord entre les esclaves. Un graphe similaire est utilisĂ© pour rĂ©aliser du recalage 2D-3D.Ensuite, nous fusionnons le graphe prĂ©cĂ©dent avec un autre graphe construit pour rĂ©aliser le recalage dĂ©formable. Le graphe rĂ©sultant de cette fusion est plus complexe et, afin d’obtenir un rĂ©sultat en un temps raisonnable, nous utilisons une mĂ©thode d’optimisation appelĂ©e ADMM (Alternating Direction Method of Multipliers) qui a pour but d’accĂ©lĂ©rer la convergence de la dĂ©composition duale. Nous pouvons alors rĂ©soudre simultanĂ©ment recalage affine et dĂ©formable, ce qui nous dĂ©barrasse du biais potentiel issu de l’approche classique qui consiste Ă  recaler affinement puis de maniĂšre dĂ©formable.The main objective of this thesis is the exploration of higher order Markov Random Fields for image registration, specifically to encode the knowledge of global transformations, like rigid transformations, into the graph structure. Our main framework applies to 2D-2D or 3D-3D registration and use a hierarchical grid-based Markov Random Field model where the hidden variables are the displacements vectors of the control points of the grid.We first present the construction of a graph that allows to perform linear registration, which means here that we can perform affine registration, rigid registration, or similarity registration with the same graph while changing only one potential. Our framework is thus modular regarding the sought transformation and the metric used. Inference is performed with Dual Decomposition, which allows to handle the higher order hyperedges and which ensures the global optimum of the function is reached if we have an agreement among the slaves. A similar structure is also used to perform 2D-3D registration.Second, we fuse our former graph with another structure able to perform deformable registration. The resulting graph is more complex and another optimisation algorithm, called Alternating Direction Method of Multipliers is needed to obtain a better solution within reasonable time. It is an improvement of Dual Decomposition which speeds up the convergence. This framework is able to solve simultaneously both linear and deformable registration which allows to remove a potential bias created by the standard approach of consecutive registrations
    corecore